Le nucléaire déclinant au pays du soleil levant

ACRO.eu.org

Le 15 septembre 2013, à peine plus de deux ans et demi après le déclenchement de la catastrophe de Fukushima, le Japon va se retrouver à nouveau sans aucun réacteur nucléaire en fonctionnement. La dernière fois, c’était le 5 mai 2012. Personne ne peut dire jusqu’à quand cette situation va perdurer. Un dossier de demande de redémarrage a été déposé pour 12 réacteurs et 5 ont déjà été rejetés. Il ne reste que 7 réacteurs en course… sur 50. Cela ne fait pas beaucoup. Comment en est-on arrivé là ?Avant la catastrophe de Fukushima, le Japon comptait 54 réacteurs nucléaires de production qui fournissaient environ 30% de l’électricité du pays. 10% venaient des énergies renouvelables, essentiellement de l’hydraulique, et le reste des énergies fossiles.

Le séisme du 11 mars 2011, a entraîné l’arrêt de 14 réacteurs, dont 4 ont été complètement détruits. Le Japon ne compte plus que 50 réacteurs officiellement. En mai 2011, le premier ministre de l’époque a demandé la fermeture de la centrale de Hamaoka, proche d’une faille sismique. En cas d’accident, ce sont les principales voies de communication entre l’Est et l’Ouest du pays qui auraient été coupées. Puis, les autres réacteurs ont été arrêtés normalement, les uns après les autres, après 13 mois d’exploitation.

Sans énergie nucléaire au printemps 2012, la question était à l’époque de savoir si le pays pourrait passer l’été, quand la demande est la plus forte à cause de la climatisation. Le gouvernement a pensé qu’avec des stress-tests demandés aux exploitants, il n’y aurait pas de problème pour redémarrer les réacteurs. Ce n’était qu’une affaire de quelques mois. Mais c’était sans compter sur la population et les plus grandes manifestations qu’a connues le pays depuis les années 70.

Le gouvernement est passé en force et a autorisé, en juillet 2012, le redémarrage de deux réacteurs de la centrale d’Ôï, dans le Kansaï, région où le nucléaire compte pour 40% de l’électricité consommée. Il n’a pas pu en redémarrer plus, au grand dam des exploitants. Et il s’est finalement avéré que le Japon aurait pu se passer de ces deux réacteurs sans coupure. Ce sont eux qui sont à nouveau arrêtés en septembre 2013, après 13 mois de fonctionnement.

Entre-temps, le gouvernement a mis en place une nouvelle autorité de sûreté nucléaire, indépendante, qui est entrée en fonction en septembre 2012. Cette Agence de Régulation Nucléaire (NRA en anglais) se distingue de son prédécesseur, la NISA, complètement inféodée au ministère de l’industrie et à l’industrie nucléaire et qui a été discréditée par la catastrophe de Fukushima.

Cette nouvelle agence s’est rapidement attelée à la tâche de rédiger un nouveau référentiel de sûreté, qui a finalement été adopté le 8 juillet 2013. Elle prétend qu’il s’agit des règles les plus strictes au monde… qui ne sont respectées par aucun réacteur japonais !

Il y a dix compagnies d’électricité au Japon, qui se sont partagées le territoire avec un monopole dans leur zone. Neuf d’entre elles exploitent, ou plutôt exploitaient, des centrales nucléaires. Elles sont toutes dans le rouge, sauf deux. Les deux compagnies qui s’en sortent sont celles qui n’ont pas ou peu de nucléaire. Les autres doivent payer le maintien de leur parc nucléaire, les emprunts et la production d’électricité de substitution. Elles payent donc une partie de la production presque deux fois et ne la vendent qu’une fois.

Elles sont donc pressées de relancer leurs réacteurs, les bénéfices primant sur la sûreté. Mais ce n’est pas si facile. Contrairement à l’Europe où, tous les dix ans, les exploitants du nucléaire doivent investir dans leurs centrales pour les mettre en conformité avec les dernières exigences, au Japon, tout comme aux Etats-Unis, les normes de sûreté qui s’appliquaient sont celles en cours au moment de la mise en service et cela, pour toute la durée de vie de la centrale.

Pour les réacteurs les plus vieux, le fossé est si grand qu’il ne sera pas possible de les remettre aux nouvelles normes. Il y a, par exemple, 13 réacteurs avec des câbles électriques inflammables. C’était toléré avant Fukushima, c’est interdit maintenant. Et comme il y a des milliers de kilomètres de câbles dans un réacteur, il est peu vraisemblable qu’il soit économiquement viable de les changer.

Il y a aussi deux sortes de réacteurs au Japon, des réacteurs à eau sous pression (REP, ou PWR en anglais) et des réacteurs à eau bouillante (REB, BWR en anglais). Tous doivent désormais être équipés d’un filtre à particules radioactives pour limiter les rejets en cas d’accident, mais les REP bénéficient d’un délai de grâce de 5 ans, car leur enceinte de confinement est plus grande.

Au final, des dossiers de demande de redémarrage n’ont été déposés que pour 12 réacteurs durant l’été 2012, tous des REP, et le gouvernement vise 10% d’électricité d’origine nucléaire à moyen terme. Le dossier de la centrale de Tomari de Hokkaïdô Electric s’est déjà fait retoqué car il est incomplet. Les données sur le système refroidissement en cas d’accident concernaient un autre système que celui en place. Encore des ingénieurs qui connaissent bien leurs machines… Celui de Takahama aussi, car Kansaï Electric a sous-estimé la hauteur du tsunami qui pourrait la frapper. Elle est bonne pour rehausser la digue, ce qui prend du temps. Il n’y a plus que 7 dossiers en cours d’évaluation par la NRA, pour 50 réacteurs. Le gouvernement était encore bien optimiste avec ses 10%.

Inversement, d’un tiers à la moitié du parc ne redémarrera probablement jamais. 17 réacteurs ont plus de 30 ans. Il n’est pas sûr qu’il vaille le coût d’investir pour les remettre à niveau. D’autres sont sur des failles qui sont maintenant considérées comme actives après un réexamen. C’est le cas pour la centrale de Tsuruga (Fukui) et probablement pour celle de Higashidori (Aomori). Et puis, TEPCo ne pourra jamais redémarrer les réacteurs de Fukushima qui n’ont pas explosé, même si la compagnie y songe encore.

Le gouvernement a aussi demandé aux autorités locales de mettre en place un plan d’évacuation de toute la population sur un rayon de 30 km autour de chaque centrale. A Tôkaï (Ibaraki), c’est quasiment mission impossible car la population se compte par million. Pour les pouvoirs locaux, c’est non.

TEPCo veut redémarrer au plus vite deux réacteurs de sa centrale de Kashiwazaki-Kariwa, fortement secouée lors du séisme de 2007. Mais, avec la légèreté avec laquelle elle se préoccupe de l’eau contaminée à Fukushima, il lui est difficile de convaincre qu’elle a amélioré sa culture de sûreté. Le gouverneur de la province de Niigata est fermement opposé au redémarrage de ces réacteurs tant que toute la lumière n’aura pas été faite sur l’accident nucléaire de Fukushima.

Plusieurs compagnies d’électricité sont donc dans une situation financière critique car elles ne pourront pas redémarrer de réacteur nucléaire avant longtemps, voire jamais.

En attendant, avec la libéralisation complète du marché de l’électricité à partir de 2016, la concurrence va être plus rude. De nombreux investissements se tournent vers les énergies renouvelables : en plus du solaire et du vent, l’exploitation de l’énorme potentiel géothermique du pays n’est plus tabou. Selon le ministère de l’industrie, une centaine de nouvelles compagnies se sont enregistrées pour vendre de l’électricité. 40% d’entre elles en produisent déjà.

Comme pour le moment tout projet de construction de nouvelle centrale nucléaire est gelé au Japon, le nucléaire est, de facto, déclinant au Japon, quelle que soit la couleur des partis au pouvoir. Le précédent gouvernement voulait arrêter le nucléaire à terme, mais relancer les réacteurs jugés sûrs par la NRA en attendant. Le nouveau gouvernement veut relancer le nucléaire et redémarrer les réacteurs jugés sûrs par la NRA en attendant, ce qui revient exactement au même.

Les deux s’accordent sur l’exportation de technologie nucléaire et le maintien des investissements dans le « retraitement » des combustibles usés et le surgénérateur Monju, même si l’usine n’a jamais fonctionné et que son lancement a connu 19 reports en plus de 5 ans. Le réacteur expérimental, quant à lui, n’a fonctionné que 240 jours depuis 1994 et ne pourra probablement jamais satisfaire les nouvelles normes de sûreté. Cette obstination n’est pas sans arrières pensées militaires et inquiète les Etats-Unis.

Le Japon ne peut pas importer d’électricité. Une moitié du pays est à 50 Hz et l’autre à 60 Hz, ce qui réduit drastiquement les échanges entre les deux parties. Il s’en est cependant sorti, grâce notamment aux économies d’énergie. Les émissions de CO2 de TEPCo par kilowattheure produit a augmenté, mais la quantité totale rejetée en 2012 est égale à celle rejetée en 2010. Les économies d’énergie ont compensé l’arrêt complet du parc nucléaire de la compagnie. En revanche, elle n’a pas réussi à baisser ses émissions conformément au protocole de Kyôto.

Selon le ministère de l’industrie, 9 des 10 compagnies d’électricité, n’ont pas réussi à remplir leurs objectifs de réduction de 20% de leurs émissions de CO2 par rapport à 1990, conformément aux engagements pris en 2007. La seule compagnie qui s’en tire, est celle d’Okinawa, qui n’a pas de nucléaire ! Chubu Electric, qui dépend peu du nucléaire, a réduit ses émissions de 12,9%. Chukoku Electric, de 13,4%. D’autres ont augmenté leurs émissions. Globalement, les 9 compagnies qui ont du nucléaire n’ont réduit, en moyenne, leurs émissions que de 2,6%. Ces compagnies produisent environ un tiers des émissions de CO2 du pays, mais le Japon va néanmoins satisfaire au protocole de Kyôto grâce aux échanges de quotas d’émission. Les compagnies d’électricité, quant à elles, rechignent à utiliser cette possibilité car elles sont dans le rouge.

Point sur la situation de l’eau contaminée à Fukushima

ACRO.eu.org

La catastrophe de Fukushima a déjà provoqué la plus forte pollution radioactive marine de l’histoire. C’était en avril 2011, l’eau contaminée du réacteur n°2 se déversait dans la mer via une galerie souterraine qui débordait. En mai 2011, ce fut le tour du réacteur n°3.

TEPCo a estimé à 520 m3 d’eau très radioactive, soit 4 700 térabecquerels (1 terabecquerel représente un million de millions de becquerels) ou 20 000 fois l’autorisation de rejet annuel la fuite d’avril. Plus précisément, il y avait 2 800 terabecquerels d’iode-131, 940 térabecquerels de césium 134 et autant de césium 137. Ce seul rejet mériterait d’être classé au niveau 5 ou 6 de l’échelle internationale INES. L’IRSN avait estimé que c’était 20 fois plus.

Pour refroidir les combustibles fondus TEPCo injecte en continu de l’eau dans les réacteurs. Si elle s’arrête, les combustibles se remettent à chauffer et des gaz radioactifs peuvent être émis. Cette eau se contamine et s’écoule dans les sous-sols des bâtiments réacteurs et dans tout un enchevêtrement de galeries souterraines. Les bâtiments turbine voisins sont aussi inondés.

Au début, TEPCo arrosait sans trop se préoccuper du devenir de l’eau. Des ouvriers mal protégés ont pataugé dans une flaque fortement contaminée, entraînant la plus forte dose reçue à ce jour. Et puis les niveaux ont commencé à monter et l’eau a débordé dans la mer. Une course contre la montre s’est alors engagée : colmater tant bien que mal la fuite pour arrêter le déversement en mer et pomper l’eau des sous-sols, la traiter et la réinjecter.

L’océan a aussi reçu 80% des rejets aériens, encore plus massifs.

Des chercheurs de la Japan Agency for Marine Earth Science and Technology ont prélevé du plancton en 10 points du Pacifique au large de la centrale de Fukushima, de Hokkaïdô à Guam, et ont trouvé une contamination systématique en césium 134 et 137. La contamination la plus élevée en césium 134 est de 8,2 à 10,5 Bq/kg et la plus basse, de 1,9 Bq/kg. Il faut ajouter le césium 137 : 14,9 Bq/kg pour l’échantillon le plus contaminé. Les échantillons ont été prélevés moins d’un an après la catastrophe, en janvier-février 2012, de 500 à 2 100 km de la centrale.

Une pollution marine persistante 

Presque deux ans et demi plus tard, l’océan reste fortement contaminé sur de centaines de kilomètres, malgré la présence de forts courants marins (voir les dernières données officielles concernant les sédiments marins et l’eau de mer). L’eau de pluie lessive les sols, avant de se retrouver dans les rivières et se rejeter en mer, et contribue, elle aussi, à la pollution marine. C’est particulièrement flagrant dans la baie de Tôkyô, où l’eau de mer est aussi contaminée qu’à quelques dizaines de kilomètres de la centrale. Des chercheurs ont aussi découvert des points chauds dans des dépressions, où la contamination en césium peut être 5 fois plus élevée que dans les environs immédiats. Les sédiments de l’embouchure de l’Abukuma, située à Miyagi à 70 km de la centrale, y sont plus de deux fois plus contaminés que dans les environs.

Toute la faune des fonds marins se contamine au contact des sédiments. Puis, cela remonte la chaîne alimentaire. Une partie des ressources halieutiques est donc touchée et les pêcheurs n’en peuvent plus d’attendre de pouvoir reprendre leurs activités. Un bar, avec plus de 1 000 Bq de césium par kilogramme, a été pêché en juillet dernier au large d’Ibaraki, province limitrophe, au Sud de Fukushima. C’est plus de 10 fois la limite fixée par les autorités.

Mais à proximité de la centrale, la situation est toute autre : aussi bien l’eau que les sédiments sont contaminés à des niveaux beaucoup plus élevés qu’au large. Les poissons qui vivent dans le port devant la centrale et y sont piégés par les filets mis en place par TEPCo peuvent atteindre des centaines de milliers de becquerels par kilogramme pour le césium. Pour l’ACRO et pour de nombreux experts, c’est le signe que les fuites ne se sont jamais arrêtées, même si les niveaux ne sont pas comparables à ceux d’avril 2011. Des publications scientifiques tentent d’en estimer l’ampleur.

La présence de tritium dans l’eau de mer au pied de la centrale est aussi une preuve indéniable que cela fuit. Le tritium, hydrogène radioactif, ne s’accumule pas dans les sédiments, contrairement au césium, et se disperse rapidement. Il n’est pas apporté par les rivières. La seule origine possible est la centrale. Et les données ne manquent pas.

Mais TEPCo a toujours nié que la centrale de Fukushima daï-ichi continue à fuir en mer et les autorités japonaises ne l’ont pas contredite.

L’eau contaminée, le cauchemar de TEPCo

Au printemps 2011, pour éviter de nouveaux débordements vers la mer, TEPCo a fait mettre en place, dans l’urgence, une station de traitement des eaux contaminées des sous-sols des bâtiments réacteur. Elle ne retire essentiellement qu’une partie du césium et le sel. Cette station a connu de nombreux déboires au début, puis elle a été remplacée par des unités plus durables. L’eau traitée est ensuite réinjectée pour refroidir les réacteurs. TEPCo parle de « circuit fermé ».

L’eau des sous-sols des réacteurs est très contaminée : 5,4 millions de Bq/L pour les deux césiums dans le réacteur n°1 et 53 millions de Bq/L dans le réacteur n°2 (prélèvement du 22 mai 2013). Les niveaux sont similaires dans d’autres bâtiments. A la sortie de l’installation de traitement des eaux, il reste du césium 137, jusqu’à 2 700 Bq/L au niveau de l’unité de désalinisation. Il y a d’autres éléments radioactifs, comme de l’antimoine 125 ou du tritium. La contamination bêta totale y atteint encore presque 100 millions de Bq/L.

Mais la compagnie s’est rapidement aperçue que le compte n’y était pas : 400 m3 d’eau souterraine pénètrent chaque jour dans les sous-sols et viennent se mélanger à l’eau qui s’est contaminée au contact des combustibles qui ne sont plus protégés par une gaine métallique. La compagnie doit donc pomper ces 400 m3 quotidiennement en plus des 300 m3 qu’elle injecte pour refroidir les réacteurs. Ainsi, jours après jours, ces 400 m3 s’accumulent et TEPCo ne sait plus où mettre les cuves de stockage. Elle doit ajouter une cuve de 1 000 m3 tous les deux jours.

Au 7 mai, il y avait 290 000 m3 d’eau contaminée dans 940 cuves, plus environ 94 500 m3 dans les sous-sols. TEPCo veut atteindre une capacité de stockage de 700 000 m3 d’ici 2015, mais ne sait pas encore où elle va mettre les cuves.

A tout cela s’ajoutent les boues de traitement qui constituent des déchets très radioactifs à vie longue sans solution.

Le dernier bilan disponible est ici.

Par manque de place, TEPCo a aussi installé des réservoirs souterrains sous la ligne à haute tension qui empêche d’y mettre des cuves. Mais ils ont rapidement fui et elle a dû les vider. Les capacités de stockage sont tout juste suffisantes. En cas de grave problème sur des cuves, TEPCo n’a pas de solution de secours.

En faillite, la compagnie choisit toujours la solution la moins onéreuse. Cela lui a été fatal avec les réservoirs. Les premières cuves, 337 dont 280 remplies, sont considérées comme “temporaires” car elles ne peuvent être utilisées que pendant 5 ans. TEPCo devra commencer à les remplacer au printemps 2016, si elles tiennent bien comme prévu.

Dans un tel contexte, l’eau contenue dans les sous-sols, les différentes tranchées et galeries souterraines constituent pour la compagnie un stockage gratuit auquel elle ne veut pas toucher. Admettre que cela fuit l’obligerait à pomper et à ajouter des cuves… Pourtant, les nappes phréatiques sont en contact direct avec les sous-sols puisque l’eau y pénètre. Comment penser que les échanges ne se font pas dans les deux sens et que les nappes ne se contaminent pas ?

Des promesses de solution

Pour faire face à la situation, TEPCo a envisagé plusieurs pistes. Elle a fait développer par Toshiba une station de traitement des eaux contaminées beaucoup plus performante que celle utilisée actuellement. Répondant au doux nom de “ALPS”, elle devrait retirer 62 radioéléments, contre deux actuellement (voir le document de présentation). Avec trois lignes pouvant traiter chacune 250 m3 par jour, elle espère enfin pouvoir faire face à la situation. Mais, initialement prévue pour septembre 2012, l’installation n’est toujours pas fonctionnelle. Après quelques mois de test, la corrosion a entraîné des fuites minimes et, en juillet 2013, elle a dû être suspendue. Toujours du pas cher… et un nouveau report de 4 mois. Voir des photos de la corrosion.

Cette station ne retirera pas tout et la contamination en tritium de l’eau traitée, de l’ordre de 1 à 5 millions de becquerels par litre, dépasse les autorisations de rejet fixées à 60 000 Bq/L. TEPCo veut donc diluer l’eau avant de la rejeter en mer… Les autorisations de rejet en tritium sont aussi limitées à 22 térabecquerels par an, ce qui est largement insuffisant. Comment TEPCo et les autorités vont-elles s’y prendre ?

La station ALPS ne retire pas non plus le carbone 14, pourtant présent dans les rejets des installations nucléaires en fonctionnement normal. Va-t-il aussi être entièrement rejeté ? Aucune donnée n’est disponible concernant cet élément difficile à mesurer.

La compagnie a aussi imaginé pomper l’eau souterraine en amont des réacteurs, avant qu’elle soit contaminée, pour la rejeter en mer. Elle espérait ainsi diminuer de 100 m3 par jour la quantité d’eau qui pénètre dans les réacteurs. Toujours cela de pris.

Lors d’un contrôle, TEPCo a mesuré du césium dans cette eau en amont, mais pas plus que ce l’on trouve dans l’eau des rivières. Les pêcheurs se sont opposés au rejet en mer et la situation est bloquée. Ils n’ont pas confiance en TEPCo, ce qui est compréhensible et légitime. D’autant plus que TEPCo s’y est reprise à trois fois avant de sortir un chiffre fiable. Pourquoi ne pas demander à un laboratoire tiers choisi par les coopératives de pêche de faire les contrôles dans les cuves tampon avant rejet en mer ? Que fait le politique à ce propos ? C’est pourtant son rôle. Un tel blocage aggrave les risques pour l’environnement.

Elle aussi commencé à injecter du silicate de sodium, ou verre liquide, dans le sol entre les réacteurs et la mer pour éviter les fuites en mer, pourtant officiellement inexistantes… En forant et en mesurant la contamination de l’eau souterraine, elle a découvert une contamination radioactive plus grave qu’imaginé.

Du déni à la reconnaissance officielle des fuites

Finalement, le 19 juin 2013, TEPCo a annoncé avoir détecté une très forte pollution radioactive dans un puits de forage situé à seulement 27 m du rivage. La contamination de la mer était inchangée. Les prélèvements dataient du 24 mai dernier et l’analyse tritium du 31 mai, mais les résultats n’ont été rendus publics que 3 semaines plus tard. TEPCo reste TEPCo… et explique que la mesure du strontium prend du temps. C’est vrai, mais rien ne l’empêchait de donner les premiers résultats plus tôt.

Dans ce puits, il y avait 1 000 Bq/L de strontium-90, particulièrement radio-toxique, ce qui ne manque pas d’inquiéter. Il y a aussi 500 000 Bq/L de tritium. Les données sont ici en anglais. On trouve aussi du ruthénium, en moindre quantité.

La compagnie a ensuite foré des puits supplémentaires à proximité qui ont montré une contamination systématique de l’eau souterraine entre les réacteurs et la mer. Une surveillance plus serrée de l’eau de mer fait aussi apparaître une contamination en tritium qui monte jusqu’à 3 100 Bq/L. Bref, difficile alors de nier les fuites en mer… mais il faudra encore attendre un mois pour que TEPCo l’admette.

Le 21 juin 2013, TEPCo publie un graphe, où l’on voit que la contamination de l’eau de mer en tritium dans le port dépasse les 100 Bq/L depuis le début de la catastrophe. En 2011, lors de la forte fuite en mer, la contamination était beaucoup plus élevée. On voit aussi une augmentation récente. Cela signifie que les fuites ont toujours existé ! Quant à la dernière mesure en strontium 90 dans l’eau de mer indiquée sur ce même document, elle date de novembre 2012 ! Rien depuis. Cet élément est pourtant très radiotoxique.

Le 27 juin, la NRA, la nouvelle autorité de sûreté nucléaire mise en place en septembre 2012, reconnaît enfin qu’elle suspecte fortement des fuites en mer depuis les réacteurs inondés. Et d’ajouter qu’il est dangereux de supposer que l’eau ne fuit pas.

Mais, il faudra attendre le 22 juillet, lendemain des élections sénatoriales, pour que TEPCo finisse par avouer, du bout des lèvres, qu’il y a bien des fuites en mer. Elle est arrivée à cette conclusion parce que la hauteur d’eau dans les nappes varie avec les marées et les précipitations. Mais rassurez-vous, la pollution reste dans la baie, selon TEPCo, et ne va pas au large ! «Les données sur l’eau de mer ne montrent pas d’augmentation anormale des taux de radioactivité». Il y a juste une pollution marine “normale”… Son document d’analyse, traduit en anglais, est disponible en ligne.

La variation des nappes phréatiques avec la marée prouve qu’il y a bien un contact entre l’eau souterraine contaminée et la mer. Ce fait est connu de TEPCo depuis janvier 2013, mais l’information n’est pas parvenue immédiatement au département environnement…

Le 26 juillet devant le tollé provoqué par son attitude, TEPCo reconnaît une « erreur de communication ». Elle ne voulait pas alarmer le public avec des hypothèses non confirmées… Est-ce bien qu’une erreur de communication ?

TEPCo a fini par reconnaître qu’elle savait qu’il y a des fuites depuis plus de deux ans. Comme les dépêches de la télévision publique japonaise ne restent pas longtemps en ligne, voici une copie d’écran. Le Japon a perdu deux ans sur ce sujet…

Solutions inadaptées 

Pour TEPCo, c’est la galerie souterraine, emplie d’eau contaminée, qui avait fui en avril 2011, qui fuit toujours, car le fond est en gravier. Cela ne vient pas des réacteurs…

L’eau de cette tranchée contient, entre autres, 750 millions de becquerels de césium 134 par litre, 1,6 milliard de becquerels de césium 137 par litre et 8,7 millions de becquerels de tritium par litre. Les résultats sont ici en anglais. Elle fait 5 000 m3. Il y aurait 6 000 m3 dans une autre tranchée voisine liée au réacteur n°3.

TEPCo a donc accéléré les travaux pour finir au plus vite sa barrière souterraine entre les réacteurs et la mer. Les ouvriers travaillaient de nuit, à cause de la chaleur, dans des conditions très difficiles. La compagnie a organisé un voyage de presse pour montrer combien elle réagissait vite et bien… et la barrière est terminée depuis le 9 août. Elle comptait aussi pomper l’eau de la tranchée, d’ici la fin août.

Mais on n’arrête pas un écoulement ! L’eau va contourner la barrière et rejaillir ailleurs. Cela ne fait que déplacer le problème. Pourquoi les autorités laissent faire ? De facto, le niveau de la nappe a commencé à monter (voir page 19 de ce document) et comme la barrière souterraine s’arrête à 1,8 m du niveau du sol, l’eau va passer par dessus. TEPCo l’a finalement reconnu. La pollution souterraine se déplace aussi. La contamination dans un puits, situé à 100 m du bâtiment turbine du réacteur n°2 et à 55 m de la mer, a aussi soudainement augmenté.

Dans le puits 1-5, TEPCo a mesuré 310 Bq/L pour le césium 134 alors qu’il y avait 21 Bq/L la semaine précédente. Pour le césium 137, c’est passé de 44 Bq/L à 650 Bq/L. Quant à la contamination bêta totale, elle est passée de 1 200 Bq/L à 56 000 Bq/L.

TEPCo ne serait-elle pas en train d’aggraver les choses ?

L’autorité de sûreté nucléaire japonaise a ordonné à TEPCo de vider rapidement la tranchée mise en cause. Mais l’eau va revenir. Après la fuite massive en mer d’avril 2011, TEPCo avait déclaré qu’elle allait sceller le passage entre le bâtiment turbine et des galeries souterraines afin de prévenir toute nouvelle fuite. C’est même écrit noir sur blanc dans feuille de route datée du 17 avril 2011. Mais elle n’a rien fait, comme l’a révélé l’Asahi. TEPCo n’a commencé les études qu’après avoir « découvert » les fuites récentes. C’est donc trop tard, et la compagnie met en avant des difficultés techniques pour se justifier.

De fait, l’eau contenue dans cette tranchée est stratifiée : il y a plus de pollution au fond que près de la surface. Pour le césium, qui s’amalgame aux particules fines, cela se comprend, mais pas pour le tritium qui reste liée à la molécule d’eau. Le fait qu’il y ait moins de tritium dans la partie haute, peut s’expliquer par le fait que l’eau y circule, contrairement à la partie la plus profonde. Ce qui signifierait que pomper, ne servirait à pas grand chose… « Il vaut mieux pomper même s’il ne se passe rien que de risquer qu’il se passe quelque chose de pire en ne pompant pas », disent les shadoks.

Un problème sans fin

Lors de la première réunion entre TEPCo et le groupe de travail ad-hoc mis en place par les autorités à propos des fuites en mer, la compagnie a dit que la quantité totale de tritium rejeté depuis mai 2011 est comprise entre 20 et 40 térabecquerels. Il est difficile d’évaluer une fuite souterraine et ce chiffre est peut-être farfelu. Cela lui permet d’affirmer qu’elle n’a pas dépassé son autorisation de rejet fixée à 22 térabecquerels par an pour le tritium.

C’est aussi beaucoup moins que ce qui est prévu pour l’usine de “retraitement” de Rokkashô si elle est mise en service un jour. Mais c’est 10 à 100 fois plus qu’une centrale nucléaire en fonctionnement normal.

Le 22 août, TEPCo a aussi fini par donner l’évaluation pour d’autres radioélements rejetés en mer depuis mai 2011 : 3 à 10 térabecquerels de strontium (3 000 à 10 000 milliards de becquerels) et de 4 à 20 térabecquerels de césium 137. C’est beaucoup plus que l’autorisation de rejet en mer fixée à 220 Gbq (220 milliards). Ce calcul est basé sur la contamination de la baie et l’hypothèse que le flux était continu.

Le gouvernement japonais, quant à lui, a estimé, à la louche, que 300 m3 d’eau contaminée fuient quotidiennement vers l’océan. Pour cela, il part du fait que 1 000 m3 d’eau souterraine transitent quotidiennement sous la centrale. On sait que 400 m3 pénètrent dans les sous-sols des réacteurs et sont pompés par TEPCo, qui voit son stock augmenter jour après jour. Sur les 600 m3 restant, l’Agency for Natural Resources and Energy, du ministère de l’économie, estime que la moitié de cette eau devrait aller dans la mer sans être contaminée et que l’autre moitié est contaminée. Les autorités reconnaissent ainsi que la galerie du réacteur n°2 n’est pas la seule en cause et que les fuites peuvent venir de partout ! Un ministre a aussi déclaré que l’on ne pouvait pas exclure que les fuites en mer aient commencé dès les premiers jours de l’accident. Effectivement.

Pour faire face à la crise provoquée par la révélation de ces fuites, le gouvernement va financer la mise en place d’une autre solution et le ministre prétend que la fuite d’eau radioactive en mer passera à 60 m3/j environ et qu’il ne sera pas possible de faire mieux. Le projet retenu, dont il avait déjà été question en mai 2013, est de geler le sol tout autour des quatre réacteurs accidentés pour empêcher l’eau d’entrer et de sortir. Il s’agit d’une technologie onéreuse, qui est utilisée temporairement pour creuser des tunnels de métro par exemple. Qu’en est-il à long terme sur une longueur de 1,4 km et une profondeur de 30 m ? Quelle énergie cela va consommer ? Evidemment, certaines compagnies se frottent déjà les mains… L’idée a été proposée par Kajima, une des majors du BTP, qui estime le projet à 30 à 40 milliards de yens (300 millions d’euros). Le gouvernement veut montrer qu’il agit et fait des annonces suite à une crise. L’autorité de sûreté, quant à elle, attend de voir. C’est la première fois depuis le début de la catastrophe que le gouvernement s’engage et engage l’argent public ainsi.

Fuite sur une cuve classée au niveau 3 de l’échelle INES

(ajouté le 8 septembre 2013)

Le 19 août 2013,  TEPCo a trouvé, lors d’une patrouille, qu’une des cuves provisoires fuyait.  Il y avait 120 litres d’eau  fortement contaminée au pied.

TEPCo a mis en ligne les premiers résultats de mesure : en plus du césium à 146 000 Bq/L dans l’eau de la flaque près de la cuve, il y a du cobalt 60 (1 200 Bq/L), du manganèse 54 (1 900 Bq/L) et de l’antimoine 125 (71 000 Bq/L) pour les émetteurs gamma. Il y a aussi du tritium et strontium qui n’ont pas encore été mesurés, mais la contamination bêta totale (hors tritium) est de 80 millions de becquerels par litre. Cette avait déjà été partiellement “décontaminée”, c’est à dire qu’une grande partie du césium avait été retiré par le système SARRY.

Et quand elle a vidée la cuve, il manquait 300 m3, soit 300 000 litres qui se sont échappés dans la nappe phréatique et en mer. TEPCo a foré un puits à proximité et découvert une contamination de la nappe phréatique, ainsi que tout le long d’un drainage qui conduit à la mer. Les cuves sont pourtant entourées d’un muret qui sert de digue pour empêcher l’eau qui pourrait fuir de contaminer l’environnement. Mais comme l’eau de pluie s’y accumule et pourrait corroder le bas des cuves, les vannes sont laissées ouvertes pour permettre les écoulements…

TEPCo n’a pas publié la composition précise de l’eau de la cuve qui a fui. On sait juste que le césium avait été partiellement retiré par la station de traitement des eaux SARRY. La contamination bêta totale est de 80 millions de becquerels par litre (hors tritium). Les 300 m3 représentent tout de même 24 térabecquerels ! La NRA a officiellement classé la fuite sur l’échelle internationale INES après avoir reçu un feu vert de l’AIEA au niveau 3 qui correspond à un “incident grave”. Les autres incidents n’ont jamais été classés. La NRA va-t-elle désormais tout classer pour améliorer sa communication ou n’utiliser l’échelle qu’au cas par cas, quand elle l’estime utile ?

Lors du pompage, 10 m3 auraient fui en un jour, ce qui laisse supposer que la fuite a duré 30 jours environ… et qu’il a donc fallu un mois à TEPCo pour la découvrir ! Une dizaine de jours plus tard, un représentant de TEPCo a confirmé à la NRA, lors d’une réunion, que la fuite de la cuve avait déjà probablement commencé en juillet 2013. Il est arrivé à cette conclusion en regardant les doses enregistrées par les travailleurs qui passent 2,5 heures par jour dans une station relais radio située à 20 m du lieu de la fuite. Ces doses ont commencé à augmenter à la mi-juillet et la compagnie va analyser les données plus anciennes. Cette observation n’a, semble-t-il, pas mené TEPCo à rechercher la cause afin de diminuer les doses prises par les intervenants sur son site !

Comment une fuite d’une telle ampleur a pu durer un mois sans être découverte ? Cette affaire a permis de découvrir que TEPCo menait deux inspections par jour. Deux personnes faisaient chacune une ronde de 2 à 3 heures et avaient 450 cuves à contrôler. L’inspection était donc essentiellement visuelle avec de nombreux angles morts. Quelques mesures de la radioactivité étaient faites rapidement, mais pas consignées. Comment détecter un changement notable dans de telles conditions ? Comment faire la différence entre de l’eau de pluie et une fuite ?

Il n’y avait pas de jauge non plus et TEPCo ne peut même pas garantir que la cuve était bien pleine. En fait, plusieurs cuves sont reliées entre-elles au moment du remplissage. C’est le cas des cuves 5, 7, 8, 9 et 10 de la zone et la jauge est dans la cuve n°7. TEPCo a arrêté d’y injecter de l’eau contaminée quand la cuve n°7 était pleine et ne sait rien pour les autres, dont la n°5 qui a fui.

TEPCo a révélé fin août que la cuve qui a fui avait d’abord été installée sur un sol instable et que la dalle qui la supportait s’était fissurée et enfoncée de 20 cm lors d’un test, en juillet 2011. Cela aurait pu endommager la cuve et provoquer la fuite. La compagnie affirme que la cuve a été correctement démontée et remontée en septembre 2011 et qu’aucun problème n’avait été détecté. Elle a été à nouveau remplie en octobre 2011. TEPCo va vider les deux autres cuves provisoires qui ont aussi été déménagées après s’être aussi enfoncées dans le sol, même si aucune fuite n’y a été détectée. Toujours les économies de bout de chandelle sans se soucier du contenu excessivement dangereux.

TEPCo a depuis renforcé ses contrôles avec 4 rondes par jour et 96 inspecteurs impliqués. Ils ont découvert des débits de dose anormalement élevés et une autre fuite : le tuyau entre deux cuves gouttait. Ces anomalies n’avaient pas été vues car les précédents appareils de mesure saturaient à 100 mSv/h. C’est monté à 2 200 mSv/h à proximité d’une cuve !

Il y a 220 000 m3 d’eau contaminée dans des cuves provisoires similaires à celle qui a fui. L’étanchéité des cuves provisoires, en caoutchouc, n’a une durée de vie que de 5 ans. Elle pourrait vieillir plus vite sous l’effet des radiations. TEPCo ne peut pas les vider rapidement car elle n’a pas de solution de rechange pour l’eau. Elle va donc installer des jauges d’ici la fin novembre. Le niveau de l’eau pourra ainsi être contrôlé à distance et une alarme va sonner en cas de baisse. Actuellement, seulement 55 cuves provisoires sur 337 sont équipées de jauges qui ne peuvent pas être contrôlées à distance.

L’AFP souligne que TEPCo ne veut pas donner le nom du fabricant des cuves, mais que les médias l’ont trouvé : Tokyo Kizai Kogyo. Cette compagnie se retranche derrière les clauses de confidentialité pour refuser de répondre aux questions. Impossible d’avoir des détails sur les cuves, leur tenue à la corrosion, aux secousses etc etc… Il n’y a plus qu’à croiser les doigts pour que ces cuves tiennent le temps de leur remplacement.

Autant le problème de l’eau souterraine qui s’infiltre dans les sous-sols est complexe. Ils n’ont pas été conçus pour être transformés en piscine. Aussi bien le séisme que les explosions hydrogène ont dû les fissurer. La fuite de cette cuve, classée au niveau 3 de l’échelle INES, est un véritable scandale : elle aurait pu être évitée si TEPCo n’était pas aussi négligente avec la sûreté.

Conclusion

Peut-on conclure ? Le fait que la centrale fuit en mer est une évidence depuis longtemps. TEPCo a refusé de voir l’évidence car elle n’a pas de solution et ses finances sont à sec. Ce stockage souterrain dans les galeries, tranchées etc est bien pratique car il permet de faire des économies de cuves. Alors, pas vu, pas pris. Quand l’ampleur des fuites a changé, TEPCo a dû se résigner à admettre les faits. Mais c’est trop tard pour agir, elle aurait dû le faire avant.

Si l’on avait dit honnêtement aux pêcheurs qu’il y a 300 m3 d’eau radioactive qui s’écoulent dans l’océan et qu’en pompant 100 m3 par jour en amont de la centrale on espère pouvoir diminuer ces fuites, ils auraient accepté. Là encore, quelle perte de temps ! Cette pollution va venir s’ajouter aux rejets passés, retardant d’autant tout espoir de voir renaître les activités marines.

En reconnaissant officiellement les fuites, le gouvernement prépare aussi l’opinion à la suite : des rejets en mer contrôlés, qualifiés d’inévitables par l’autorité de sûreté nucléaire japonaise, qui viendront s’ajouter aux fuites.

Un collectif d’ONG et d’élus a demandé aux autorités de consacrer plus de moyens humains au problème des fuites, quitte à retarder l’instruction des dossiers de demande de redémarrage de quelques réacteurs nucléaires. Actuellement, d’après le Japan Times, 80 employés de la NRA travaillent sur les dossiers de sûreté des réacteurs et 42 sur la crise à Fukushima.

TEPCo qui, par le passé, n’avait pas hésité à falsifier des rapports de sûreté, reste TEPCo. Ces explications sur ses erreurs de communication ne sont pas recevables. Quand de la vapeur d’eau s’échappant du réacteur n°3 a été récemment découverte, TEPCo a immédiatement dit que c’était la pluie. Elle n’a pas attendu d’être sûre d’elle. Or ce n’était pas la pluie… Elle a reconnu par la suite qu’elle injecte 16 m3/h d’azote et qu’elle n’en récupère que 13 m3/h. Les 3 m3/h restant s’échappent par elle ne sait où. Et ces gaz sont radioactifs. (Voir page 11 de ce document en japonais).

Le rejet atmosphérique pour les trois réacteurs est de l’ordre de 10 millions de Bq/h (10 MBq/h). C’est ici en japonais. Il doit ne s’agir que du césium. Si l’on multiplie 24 h et 365 j, on arrive à presque 88 milliards de Bq/an (88 GBq/an). C’est beaucoup plus que les rejets aériens d’une centrale nucléaire en fonctionnement normal et même que les rejets aériens en césium de l’usine de retraitement de La Hague. Les graphes montrent que ces rejets sont stables depuis un an. TEPCo évalue l’impact sanitaire à la bordure du site à 0,03 mSv/an. Il n’est pas dit comment ils ont fait le calcul. C’est moins que ce qui dû à la contamination des sols au même endroit, mais ce serait jamais accepté pour une centrale en fonctionnement normal.

Le pire est peut-être devant nous. En cas de grave problème dans le stockage de l’eau contaminée, suite à un séisme par exemple, ce sera une nouvelle fuite majeure. La situation à la centrale reste très fragile : on se souvient qu’un rat a fait disjoncter 9 installations.

Mais TEPCo reste optimiste. Elle a publié une nouvelle version de sa feuille de route qui prévoit le retrait du corium (combustible fondu) à partir de 2020 pour les réacteurs 1 et 2, et 2021 pour le 3. C’est 18 mois plus tôt que pour la précédente feuille de route. On ne sait pas encore quel jour…