Le réacteur n°3 a un nouveau toit

TEPCo et ses sous traitants ont terminé l’installation d’un nouveau toit sur le réacteur n°3. Les travaux avaient débuté en août 2017. TEPCo devrait bientôt mettre des photos en ligne. La compagnie, avait organisé un voyage de presse sur place en novembre dernier, malgré les forts débits de dose sur place.

Le toit, de forme cylindrique, pèse 55 tonnes et fait 17 m de haut.

TEPCo condamnée à dédommager un suicide

Fumio Ôkubo, âgé de 102 ans, était le doyen d’Iitaté-mura. Il s’est suicidé le 12 avril 2011, après que le journal télévisé ait annoncé que le gouvernement s’apprêtait à ordonner l’évacuation de sa commune en avril 2011.

Sa famille a porté plainte contre TEPCo en juillet 2015 et a réclamé 60,5 millions de yens (450 000 €) de dédommagements. La justice a reconnu le fort stress lié à la perspective de fuir et la crainte d’être un fardeau pour ses proches. Elle vient de lui accorder 15,2 millions de yens (114 000  €).

La veille de son suicide, Fumio Ôkubo avait déclaré avoir vécu trop longtemps et ne pas vouloir quitter sa maison, après avoir entendu à la télévision que le gouvernement s’apprêtait à ordonner l’évacuation de sa commune. TEPCo a nié le lien avec la catastrophe nucléaire, arguant qu’il était malade.

La famille espère que des représentants de TEPCo viendront se recueillir et présenter leurs excuses.

C’est la troisième fois que la justice ordonne à TEPCo de dédommager des suicides. Un premier jugement date de 2014 et l’autre de 2015. La compagnie n’avait pas fait appel.

Chiffres clés pour le septième anniversaire

A l’approche du septième anniversaire de la catastrophe nucléaire à la centrale de Fukushima, voici quelques chiffres clé tels qu’ils apparaissent dans les médias et les sites officiels. Cet article sera mis à jour au fur et à mesure de leur apparition. Une version antérieure de cet article a été traduite en anglais par Hervé Courtois.

Les chiffres clés publiés à l’occasion du sixième anniversaire sont ici.

Situation des réacteurs

Les travaux visent essentiellement à sécuriser les réacteurs accidentés qui sont encore menaçants. A proximité, les débits de dose sont tels que le temps de séjour doit être très limité, ce qui complique les travaux.

Réacteur n°4

La cuve était vide le 11 mars 2011 et il n’y a pas eu de fusion du cœur, mais une explosion hydrogène a détruit le bâtiment réacteur. Depuis décembre 2014, la piscine de combustible du réacteur a été vidée et les travaux sont arrêtés car il n’est plus menaçant.

Les quelques débits de dose disponibles à l’intérieur du bâtiment réacteur sont ici exprimés en mSv/h, sachant que les limites sont en mSv/an. Ils datent de 2016.

Réacteur n°3

Il y a eu une fusion du cœur et une explosion hydrogène a détruit le bâtiment réacteur. Tous les débris de la partie haute ont été retirés à l’aide d’engins télécommandés. Un nouveau bâtiment en en cours de finition. La construction du toit, de forme cylindrique, est terminée. Le retrait des combustibles devrait débuter cette année et se terminer en 2019.

Les premières images prises à l’intérieur de l’enceinte de confinement ont conduit à réviser le scénario de fusion du cœur.

Les quelques débits de dose disponibles à l’intérieur du bâtiment réacteur sont ici exprimés en mSv/h, sachant que les limites sont en mSv/an. Ils datent de 2016.

Il y aurait entre 188 et 394 tonnes de corium dans ce réacteur, avec une valeur nominale à 364 tonnes pour le réacteur n°3. Ce dernier contient du combustible MOx, à base de plutonium. Pour en savoir plus.

Réacteur n°2

Il y a eu fusion du cœur, mais le bâtiment réacteur est entier. TEPCo n’a pas commencé à retirer les combustibles usés de la piscine. La compagnie a envoyé plusieurs robots dans l’enceinte de confinement afin de localiser le corium, ce mélange de combustible fondu et de débris.

Plusieurs séries d’images ont été mises en ligne par la compagnie. Celles prises en janvier 2017 ont été analysées et remises en ligne en décembre 2017. On y voit un trou béant juste sous la cuve, fort probablement dû au passage du combustible fondu. Celles obtenues en janvier 2018 au fond de l’enceinte montrent ce que TEPCo pense être du corium et des fragments d’assemblage de combustible.

Les débits de dose à l’intérieur de l’enceinte de confinement sont létaux en quelques minutes. Les derniers résultats publiés suite à l’exploration de janvier 2018 sont assez surprenant : pas plus élevés à proximité de ce que TEPCo pense être du corium, mais plus élevés à l’extérieur.

Les quelques débits de dose disponibles à l’intérieur du bâtiment réacteur sont ici exprimés en mSv/h, sachant que les limites sont en mSv/an. Ils datent de 2016.

Il y aurait entre 189 et 390 tonnes de corium dans ce réacteur, avec une valeur nominale à 237 tonnes. Pour en savoir plus.

Réacteur n°1

Il y a eu une fusion du cœur et une explosion hydrogène a détruit le bâtiment réacteur. Ce bâtiment avait été recouvert d’une nouvelle structure en 2011, qui a été entièrement démantelée en novembre 2016. TEPCo a commencé à retirer les débris de la partie haute du réacteur, pour, ensuite, reconstruire une nouvelle structure afin de vider la piscine de combustibles.

Les débits de dose à l’intérieur du bâtiment réacteur sont ici exprimés en mSv/h, sachant que les limites sont en mSv/an. Ils datent de 2016.

Il y aurait entre 232 et 357 tonnes de corium dans ce réacteur, avec une valeur nominale à 279 tonnes. Pour en savoir plus.

Réacteurs 5 et 6

Les réacteurs 5 et 6 étaient partiellement déchargés le 11 mars 2011 et un générateur diesel de secours était encore fonctionnel, ce qui a permis d’éviter la fusion du cœur. Ces réacteurs sont maintenant entièrement déchargés et vont être démantelés.

Contamination de la centrale

Les derniers débits de dose sur le site de la centrale publiés par TEPCo datent de février 2017 :

L’eau souterraine reste aussi contaminée. Chiffres à venir.

Eau contaminée

Le combustible qui a fondu et percé les cuves doit toujours être refroidi. A cette fin, TEPCo injecte 72 m3 d’eau par jour dans chacun des réacteurs 1, 2 et 3 à cette fin (source). Cela fait un total de 216 m3/j. Cette eau se contamine fortement au contact du combustible fondu et s’infiltre dans les sous-sols des bâtiments réacteur et turbine où elle se mélange à l’eau des nappes phréatiques qui s’y infiltre.

Au début de la catastrophe, les infiltrations s’élevaient à environ 400 m3 par jour, qui se contaminaient et qu’il fallait entreposer dans des cuves. Inversement, l’eau des sous-sols, fortement contaminée, fuyaient vers la nappe puis l’océan.

Pour réduire les infiltrations d’eau souterraine, TEPCo pompe en amont des réacteurs, avant que cette eau soit contaminée et la rejette directement dans l’océan. Elle a aussi construit une barrière tout le long du littoral et pompe les nappes phréatiques au pied des réacteurs. Une partie de cette est partiellement décontaminée et rejetée dans l’océan. Une autre partie, trop contaminée, est mélangée à l’eau pompée dans les sous-sols des réacteurs pour être mise dans des cuves après traitement, en attendant une meilleure solution.

La dernière barrière mise en place est le gel du sol tout autour des 4 réacteurs accidentés, sur 1,4 km dans le but de stopper les infiltrations. Après de nombreux déboires, le gel est terminé depuis novembre 2017, mais l’effet reste limité. Même l’Autorité de Régulation Nucléaire, la NRA, doute sérieusement de l’efficacité de cette technique qu’elle considère désormais comme secondaire.

Il y a un an, lors de notre précédent bilan, TEPCO pompait quotidiennement 135 m3 d’eau contaminée dans les sous-sols des bâtiments réacteurs et turbine, en plus de celle qu’elle injectait pour le refroidissement et 62 m3 des nappes phréatiques, ce qui faisait un total de 197 m3 qui s’accumulaient quotidiennement dans des cuves après traitement (source). C’est plus en cas de pluie, voire beaucoup plus lors des typhons.

Maintenant que le gel du sol est terminé, ces flux se sont réduits. Selon le dernier bilan publié par la compagnie, 75 m3 d’eau souterraine s’infiltrent quotidiennement dans les sous-sols des réacteurs auxquels il faut ajouter 15 m3 par d’eau souterraine pompée trop contaminée pour être traitée directement avant rejet en mer. Cela fait donc un total de 90 m3 par jour. Ces valeurs correspondent à une semaine sans pluie. En cas de fortes précipitations, c’est beaucoup plus, même si TEPCo a asphalté et bétonné tous les sols afin de limiter les infiltrations (source).

L’eau pompée dans les sous-sols est traitée puis entreposée dans des cuves sur le site de la centrale. TEPCo retire 62 radioéléments, mais il reste notamment le tritium, de l’hydrogène radioactif, qu’il est difficile de séparer. La compagnie annonce avoir déjà traité 1 891 070 m3 d’eau contaminée, ce qui a généré 9 219 m3 de déchets liquides très radioactifs et 597 m3 de boues radioactives. Une partie de cette est utilisée pour le refroidissement et le reste est stocké dans des cuves. Selon la compagnie, le stock d’eau traitée ou partiellement traitée s’élève à 1 037 148 m3 auxquels il faut ajouter 35 010 m3 d’eau dans les sous-sols des bâtiments réacteur et turbine (source). Il y a près d’un millier de cuves pour garder cette eau qui occupent presque tout le site de la centrale.

Que faire de cette eau traitée ? Après avoir envisagé plusieurs pistes peu réalistes, il ne reste que le rejet en mer. La concentration en tritium serait d’un à cinq millions de becquerels par litre, ce qui est plus que la limite autorisée, fixée à 60 000 Bq/L. Mais, il suffit de diluer, comme cela est fait en fonctionnement normal. Le problème est plutôt du côté du stock total, estimé à 3,4 PBq (3,4 milliards de millions de becquerels), ce qui représente de l’ordre de 150 années de rejet à la limite autorisée.

A titre de comparaison, l’autorisation de rejet en mer de l’usine Areva de La Hague est, pour le tritium, de 18,5 PBq et les rejets effectifs de ces dernières années variaient entre 11,6 et 13,4 PBq par an. Le stock de tritium de Fukushima représente donc 3 mois et demi de rejets à La Hague. De quoi rendre jalouses les autorités japonaises !

En revanche, on ne connait pas la concentration des autres radioéléments après filtrage. filtrés. C’est pourtant important pour faire une étude d’impact avant rejet. Toyoshi Fuketa, le président de l’Autorité de Régulation Nucléaire, a demandé à ce qu’une décision soit prise cette année, en précisant que le rejet en mer est la seule solution. La préparation du rejet devrait prendre deux à trois ans, selon lui, et TEPCo va rapidement manquer de place (source).

Travailleurs

A la centrale nucléaire de Fukushima daï-ichi

Du 11 mars 2011 au 31 mars 2016, 46 956 travailleurs ont été exposés aux rayonnements ionisants sur le site de la centrale accidentée de Fukushima daï-ichi, dont 42 244 sous-traitants. Ce sont les sous-traitants qui prennent les doses les plus élevées, avec une moyenne qui varie de 0,51 à 0,56 mSv par mois entre Janvier et Février 2016. C’est entre 0,18 et 0,22 pour les salariés de TEPCo.

Il y a aussi 1 203 personnes qui ont une limite plus élevée pour pouvoir continuer à pénétrer sur le site. Leur dose moyenne cumulée depuis le début de l’accident est de 36,49 mSv et la valeur maximale de 102,69 mSv.

• Le 1er avril 2016, TEPCo a remis tous les compteurs à zéro. Ainsi, 174 travailleurs qui avaient dépassé la limite de dose de 100 mSv sur 5 ans peuvent revenir. Depuis cette date, jusqu’au 31 décembre 2017, 18 348 personnes ont travaillé en zone contrôlée, dont 16 456 sous-traitants (90%). Impossible de savoir combien d’entre eux ont déjà été exposés lors des cinq premières années. Durant cette période, les sous-traitants ont pris une dose moyenne cumulée de 4,29 mSv, avec un maximum à 60,36 mSv, alors que les employés de TEPCo ont pris une dose moyenne cumulée de 1,79 mSv avec un maximum à 22,85 mSv. Les sous-traitants ont ainsi pris 95,4% de la dose collective cumulée qui est de 74 hommes.sieverts (source).

TEPCo a mis en ligne de nombreuses autres données sur les doses prises, avec des répartitions par âge, année… Lien direct vers la page en anglais.

TEPCo a réduit les primes de risques versées aux intervenants car les débits de dose ont baissé sur le site. Ce sujet serait l’un des principaux griefs du personnel engagé sur place. Elle pouvait atteindre 20 000 yens (150 €) par jour, même si, pour les sous-traitants, cette prime était ponctionnée à chaque niveau de sous-traitance, pour être réduite, parfois, à moins de la moitié. En mars 2016, TEPCo a divisé le site de la centrale accidentée en 3 zones, rouge, jaune et verte, en fonction du niveau de risque. Mais pour de nombreux intervenants, ce zonage n’a pas de sens : des débris de la zone rouge sont transférés dans la zone verte. Les poussières soulevées par les engins ne respectent pas les délimitations… Ainsi, les sous-traitants font porter des équipements de protection comme des masques dans la zone verte, même si TEPCo ne l’exige pas (source).

Sur les chantiers de décontamination

Dans les zones évacuées, c’est le gouvernement qui est maître d’œuvre des chantiers de décontamination et dans les zones non évacuées, ce sont les communes. Le bilan mensuel du ministère de l’environnement (source, page 16) fait état de :

  • 13 millions de décontamineurs dans les zones évacuées et
  • 17 millions de décontamineurs dans les zones non évacuées selon les données transmises par les communes.

Ces chiffres sont complètement irréalistes. Il s’agit probablement du nombre de contrats signés. Ce qui signifie que les autorités ne connaissent pas le nombre de décontamineurs et qu’elles ne connaissent donc pas les doses individuelles.

Un suivi dosimétrique individuel a été introduit en novembre 2013 pour les décontamineurs (source en japonais) qui travaillent en zone évacuée et qui sont soumis aux mêmes limites de dose que les travailleurs du nucléaire (explications en anglais). Les données pour l’année 2016 font état de 36 000 décontamineurs. On est loin des millions de décontamineurs rapportés par le ministère de l’environnement. La majorité d’entre eux (87%) a reçu une dose inférieure à 1 mSv/an et la dose la plus élevée est comprise en 7,5 et 10 mSv. Il y a aussi des données par nombre de chantiers ou par zone.

Les données les plus récentes en anglais, datées du 8 janvier 2018, concernent la période octobre 2016 – septembre 2017. Les doses sont rapportées par période de 3 mois alors que les limites sont annuelles. Il est donc difficile d’interpréter ces chiffres. S’il apparaît que la très grande majorité des décontamineurs ont reçu moins de 1 mSv sur 3 mois, on ne sait pas combien sont sous cette limite sur un an. La dose moyenne annuelle est, quant à elle, de 0,5 mSv.

Autres personnes exposées

Je n’ai pas trouvé de données officielles quant aux doses prises par les personnes qui ont continué à travailler en zone évacuée ou les nombreux policiers qui gardent les accès aux zones interdites et y patrouillent.

Cartographie de la pollution radioactive

• La dernière cartographie aérienne de la pollution radioactive autour de la centrale accidentée de Fukushima daï-ichi date de novembre 2016 et est disponible en ligne sur le site dédié.

Les environs immédiats de la centrale nucléaire n’ont pas été recontrôlés, semble-t-il.

Décontamination

La décontamination des zones évacuées est sous la responsabilité du gouvernement. Ailleurs, là où l’exposition externe pouvait dépasser 1 mSv/an, ce sont les communes qui doivent s’en occuper. Voir le dernier bilan publié par le ministère de l’environnement.

Dans la zone évacuée, la décontamination est terminée, sauf dans la partie classée en « zone de retour difficile » où l’exposition externe pouvait dépasser 50 mSv/an. La décontamination n’a eu lieu que dans les zones habitées et agricole, pas dans les forêts. Le ministère annonce 22 000 habitations décontaminées, 1 600 ha de routes, rues, voies…, 8 500 ha de terrains agricoles et 5 800 ha de forêt à proximité des zones résidentielles.

Dans les zones non évacuées, 104 communes étaient initialement concernées, à Fukushima, Iwaté, Miyagi, Ibaraki, Tochigi, Gunma, Saïtama et Chiba et c’est passé à 92 par la simple décroissance radioactive. Les travaux de décontamination sont terminés dans 89 d’entre elles et restent à faire dans 3 autres. Le ministère annonce 418 582 habitations décontaminées à Fukushima et 147 656 dans les autres provinces, 11 958 équipements publics à Fukushima et 11 803 dans les autres provinces. Il est aussi question de 18 403 km de routes, rues, voies à Fukushima et 5 399 dans les autres provinces, 31 043 ha de terrains agricoles à Fukushima et 1 588 ha dans les autres provinces.

Pour les zones dites de retour difficile, le gouvernement va décontaminer un centre à Futaba et Ôkuma afin de pouvoir affirmer qu’il n’a abandonné aucune commune. La fin des travaux est prévue pour 2022. Qui va revenir après 11 années d’évacuation ? Ces travaux en zone très contaminée vont engendrer une exposition des décontamineurs aux rayonnements ionisants. Comme il n’y a pas de seuil d’innocuité, le premier principe de la radioprotection impose la justification de ces expositions et cela n’a pas été fait.

Le ministère de l’environnement a budgété 2 600 milliards de yens (20 milliards d’euros) jusqu’en 2016 pour financer les travaux de décontamination. La moitié est pour les zones évacuées, sans prendre en compte la zone dite de retour difficile et l’autre moitié pour les zones non évacuées.

Déchets radioactifs issus de la décontamination

Voir notre reportage de l’été 2016 sur le problème des déchets issus de la décontamination. Les déchets organiques sont incinérés et les cendres doivent être stockés comme des déchets industriels. Les sols, quant à eux, doivent être entreposés pour 30 ans sur un site de 16 km2 autour de la centrale de Fukushima daï-ichi, le temps de trouver une solution définitive.

• Selon le ministère de l’environnement (source), la décontamination des zones évacuées a engendré 8 400 000 m3 de déchets contenant des sols radioactifs auxquels s’ajoutent environ  7 200 000 m3 dans les zones non évacuées (6 800 000 m3 à Fukushima et 400 000 m3 dans les autres provinces concernées).

• En ce qui concerne le site d’entreposage des sols contaminés de 16 km2 (1 600 hectares) d’une capacité de 22 millions de mètres cubes, le gouvernement n’a réussi à louer ou acheter que 48,4% de la surface, sachant que 21% des terrains appartenaient déjà au gouvernement ou aux communes (source). C’était 18% il y a un an (source).

Ce site n’accueillera que les déchets de Fukushima. Le ministère annonce avoir transféré 404 773 sacs d’un mètre cube environ sur ce site en 2017. On est encore loin des millions de mètres cubes, mais cela a nécessité 67 146 transports en camion. Et il faudra autant de transports pour les reprendre dans 30 ans… Le volume total entreposé pour le moment est de 633 889 m3.

Pour en savoir plus sur ce site d’entreposage.

• Pour les déchets radioactifs des autres provinces, les autorités privilégient l’enfouissement même si elles peinent à trouver des sites (source).

• En attendant, il y a des déchets partout, à perte de vue. Voir les photos de l’ACRO et les vidéos de Greenpeace.

Zones évacuées

• Les derniers ordres d’évacuer ont été levés au 1er avril 2017 et il reste surtout les zones dites de retour difficile où l’accès est interdit.

Coût de la catastrophe

Les chiffres officiels relatifs au coût de la catastrophe ont été revus à la hausse en décembre 2016 pour atteindre 21 500 milliards de yens (175 milliards d’euros) et n’ont pas changé depuis. Cela inclut le démantèlement des réacteurs de Fukushima daï-ichi, à hauteur de 8 000 milliards de yens (65 milliards d’euros), 7 900 milliards de yens (64 milliards d’euros) pour les indemnisations, près de 4 000 milliards de yens (32,5 milliards d’euros) pour la décontamination et 1 600 milliards de yens (13 milliards d’euros) pour le centre d’entreposage temporaire des déchets radioactifs. Pour en savoir plus.

Cette somme ne comprend pas le coût du stockage des déchets issus du démantèlement de la centrale accidentée ni la création d’un îlot décontaminé dans les zones dites « de retour difficile » dont le seul but est la non disparition des villages concernés.

La facture de la catastrophe nucléaire pourrait être de 50 000 à 70 000 milliards de yens (420 à 580 milliards d’euros), ce qui est 3 fois plus élevé que l’estimation gouvernementale, selon une étude du Japan Center for Economic Research (source).

TEPCo a déjà reçu un total de 8 032,1 milliards de yens (59,5 milliards d’euros au cours actuel) d’avance pour les indemnisations. Cet argent est prêté sans intérêt (source).

Le gouvernement détient toujours 50,1% des parts de TEPCo.

Parc nucléaire japonais

• Il y avait 54 réacteurs nucléaires de production d’électricité au Japon qui fournissaient environ 30% de l’électricité du pays.

Les réacteurs 1 à 4 de la centrale de Fukushima daï-ichi ont été détruits et les 5 et 6 arrêtés définitivement.

Un nouveau référentiel de sûreté a été introduit en juillet 2013 et aucun réacteur ne satisfaisait aux nouvelles exigences. Il a fallu revoir la sûreté, investir dans dans le renforcement de la tenue aux séismes et faire valider le tout. Depuis, 8 autres réacteurs ont été arrêtés définitivement, car leur remise en service coûte trop cher : Tsuruga 1 (Fukui), Genkaï 1 (Saga), Shimané 1, Ikata 1 (Ehimé), Mihama 1 et 2 (Fukui) et Ôï 1 et 2 (Fukui).

Le parc nucléaire japonais n’est donc plus officiellement constitué que de 40 réacteurs nucléaires. D’autres arrêts définitifs devraient suivre, comme les 4 réacteurs de Fukushima daï-ni noyés par le tsunami ou à Tsuruga à cause d’une faille sismique.

14 réacteurs nucléaires ont reçu une autorisation de remise en service, mais seulement 5 ont redémarré depuis la mise en place du nouveau référentiel de sûreté. Ikata 3 a été arrêté depuis, sur ordre de la justice, à cause du risque volcanique (source). Quatre réacteurs (Ôï 3 et 4 et Genkaï 3 et 4) ont vu leur redémarrage retardé suite à un scandale chez Kôbé Steel (source). Pour trois autres réacteurs (Mihama 3 et Takahama 1 et 2) qui ont plus de 40 ans, la remise en service n’est pas pour tout de suite car il y a beaucoup de travaux de renforcement de la sûreté prévus.

TEPCo a reçu un feu vert de l’autorité de régulation nucléaire pour Kasiwazaki-Kariwa 6 et 7, mais il lui faut obtenir l’accord des autorités locales et ce n’est pas gagné car le gouverneur de Niigata est contre (source). Se pose le problème, en particulier, de savoir si TEPCo a la culture de sûreté suffisante pour exploiter des réacteurs nucléaires après ce qui s’est passé à la centrale de Fukushima daï-ichi (source).

Il ne reste actuellement que 4 réacteurs nucléaires en activité au Japon : Takahama 3 et 4 exploités par Kansaï Electric à Fukui et Sendaï 1 et 2 exploités par Kyûshû Electric à Kagoshima.

• Le surgénérateur Monju a été arrêtés définitivement. Il n’a fonctionné que 250 jours depuis sa mise en service en 1994. Une fuite de sodium avait entraîné son arrêt en 1995. La culture de sûreté y est défaillante (source).

• Les autorités n’ont pas encore abandonné l’usine de retraitement située à Rokkashô-mura dans la province d’Aomori dont la mise en service cumule déjà 24 années de retard depuis 1997, année de la première date de mise en service prévue (source).

Cette usine est supposée séparer le plutonium pour le recycler dans le parc nucléaire actuellement à l’arrêt, à l’exception de 4 réacteurs. Elle n’est pas utile.

• Le charbon couvre maintenant 30% de la production d’électricité au Japon et cela augmente encore. Si tous les projets aboutissent, cela devrait atteindre 40%… alors que décembre 2017 marquait les 20 ans du protocole de Kyôto. Les engagements du Japon lors de la COP21, bien que modestes, pourraient ne pas être tenus.

Pas besoin de prévoir un accident sur plusieurs centrales à Fukui selon les autorités

Les centrales nucléaires de Takahama et d’Ôï ne sont séparées que de 13,5 km sur la mer du Japon dans la province de Fukui. Les autorités régionales et le gouvernement ont estimé ensemble qu’il n’était pas nécessaire de prévoir un plan d’évacuation pour deux accidents nucléaires simultanés dans ces deux centrales. Les plans d’évacuation de chacune d’entre elles seraient suffisants.

Des représentants des provinces voisines et de l’exploitant étaient présents lors de cette réunion.

Il y a 160 000 et 180 000 habitants dans un rayon de 30 km autour de chacune des ces centrales.

TEPCo à nouveau condamnée à mieux indemniser

Un tribunal de Tôkyô vient à nouveau de condamner TEPCo à mieux indemniser des victimes de la catastrophe nucléaire. Un groupe de 321 personnes du district d’Odaka de Minami-Sôma demandaient 11 milliards de yens en dédommagement et 318 ont obtenu 1,1 milliards de yens (8 millions d’euros). 3 ont été déboutés.

Ce district est à moins de 20 km de la centrale accidentée et a donc été évacué. L’ordre d’évacuer a été levé en juillet 2016. 12 800 personnes y vivaient avant la catastrophe et elles n’étaient plus que 2 400 en décembre 2017. Les plaignants estimaient que ce district était à jamais perdu et qu’ils ne pourraient jamais retrouver leur vie d’antan, ce que conteste TEPCo.

TEPCo dit qu’elle allait payer 8,5 millions de yens à chaque résident (63 000€), conformément aux règles fixées par le gouvernement. Mais les plaignants estiment que c’est insuffisant, invoquant des difficultés financières et des souffrances psychologiques, et réclamaient 32 millions de yens (237 000€) supplémentaires par personne. Le juge leur accorde 3,3 millions de yens supplémentaires par personne (24 000€), ne s’estimant pas contraint par les directives gouvernementales.

Trois personnes ont été déboutées pour différentes raisons, dont le fait de vivre à l’étranger en 2011.

Les plaignants pourraient faire appel car ils jugent l’indemnisation insuffisante, même si la décision du tribunal montre qu’il reconnait la notion de « compensations pour la perte de sa ville d’origine ». Le juge, quant à lui, a mentionné une rupture du droit à une vie stable sur un territoire.

Une trentaine de plaintes similaires ont été déposées au Japon.

Mystérieux rejet radioactif : la Russie soupçonnée nie les fait mais manque de transparence

Mises à jour en fin de document :

Explications

11 novembre 2017

L’Institut de Radioprotection et de Sûreté Nucléaire (IRSN) vient d’annoncer (en français et en anglais) que les traces de ruthénium-106, élément radioactif, détectées en Europe occidentale en septembre dernier, étaient probablement dues à un rejet massif, de l’ordre de 100 et 300 térabecquerels, quelque part « entre la Volga et l’Oural sans qu’il ne soit possible, avec les données disponibles, de préciser la localisation exacte du point de rejet. »

L’Institut ajoute que « les conséquences d’un accident de cette ampleur en France auraient nécessité localement de mettre en œuvre des mesures de protection des populations sur un rayon de l’ordre de quelques kilomètres autour du lieu de rejet. »

Toujours selon l’IRSN, le rejet aurait eu lieu au cours de la dernière semaine du mois de septembre 2017 et serait terminé.

Le ruthénium-106

Le ruthénium 106 est un produit de fission radioactif issu de l’industrie nucléaire qui n’existe pas à l’état naturel. Sa demi-vie est d’un peu plus d’un an (373 jours), ce qui signifie que la quantité présente est divisée par deux tous les ans. En se désintégrant, le ruthénium-106 se transforme en rhodium-106, qui est lui aussi radioactif avec une demi-vie de 30 secondes. Chaque désintégration de ruthénium-106 est accompagnée, peu de temps après, de la désintégration du rhodium-106. Ainsi, il faudrait considérer le couple ruthénium-rhodium et multiplier par deux la quantité rejetée de 100 et 300 térabecquerels annoncée par l’IRSN.

C’est au rhodium-106 que l’on devra l’essentiel de la dose provoquée par l’incorporation de couple inséparable d’isotopes radioactifs.

Origine du rejet

En cas de rejet provenant d’un réacteur nucléaire, divers radioéléments sont détectés. Ici, comme le ruthénium-106 et le rhodium-106 sont les seuls radioéléments à avoir été mis en évidence, l’origine ne peut pas être un réacteur nucléaire. En revanche, ce peut être le rejet accidentel d’une installation de traitement des combustibles usés ou de fabrication de sources radioactives.

L’ACRO détecte parfois le couple ruthénium-rhodium autour des usines Areva de La Hague. En 2001, deux incidents dans ces usines avaient conduit l’association à démontrer que l’exploitant, qui s’appelait encore Cogéma, sous-estimait ses rejets de ruthénium-rhodium dans l’atmosphère. En mai, puis en octobre 2001, les quantités effectivement rejetées étaient environ 1 000 fois plus élevées que ce qui avait été annoncé (voir notre note technique). Les travaux menés à la suite de cette alerte de l’ACRO ont montré que les rejets atmosphériques en ruthénium-rhodium avaient été systématiquement sous-estimés.

En février 2016, l’ACRO avait de nouveau détecté ce couple de radioéléments autour des usines de La Hague, ce qui témoignait d’un rejet atmosphérique plus important qu’en routine, indiquant peut-être un dysfonctionnement non déclaré.

Quantité rejetée

L’IRSN annonce un terme source en Russie de 100 et 300 térabecquerels pour le seul ruthénium-106, et donc le double en prenant aussi en compte le rhodium-106. Un térabecquerel, c’est 1 000 milliards de becquerels.

A titre de comparaison, l’autorisation de rejets atmosphériques des usines Areva de La Hague est de 0,001 térabecquerel (1 GBq) par an pour les émetteurs bêta-gamma (dont les ruthénium-rhodium) autres que le tritium, gaz rares et iodes. Concernant les rejets liquides, pour le seul ruthénium-106 rejeté en mer, la limite est de 15 térabecquerels par an.

Lors des incidents de 2001, c’est de l’ordre de 10 GBq qui a été rejeté à chaque fois, pour le seul ruthénium. Le rejet accidentel de septembre 2017 estimé par calcul par l’IRSN est 10 000 à 30 000 fois plus élevé.

La quantité rejetée lors de l’incident rapporté par l’IRSN est donc considérable et cet évènement devrait être classé au niveau 5 de l’échelle internationale INES. Tchernobyl et Fukushima étaient au 7, qui est le niveau maximal. Pourtant, aucune information n’est disponible sur le site de l’AIEA, qui est plus préoccupée par la promotion du nucléaire que par son contrôle.

Conclusion provisoire

60 ans après la catastrophe de Kychtym dans l’Oural et plus de 30 ans après celle de Tchernobyl, qu’un évènement de cette ampleur puisse rester secret plus d’un mois est incroyable. C’est particulièrement grave pour les populations locales qui ont été exposées sans bénéficier de la moindre protection, comme en 1957 et 1986.

A noter que dès le 11 octobre dernier, le Bundesamt für Strahlenschutz en Allemagne pointait du doigt le Sud de l’Oural (communiqué en allemand et en anglais), affirmant que l’IRSN partageait ce point de vue. Il n’y a donc pas eu de progrès en un mois dans l’identification de l’origine de ce rejet.

Un tel secret s’explique-t-il par le fait qu’une installation militaire est en cause ? La Russie a nié être à l’origine de ce rejet. Elle devrait publier toutes ses données de mesure dans l’environnement.

Sans laboratoire indépendant, ni surveillance citoyenne, rien n’a changé sur place. Parce qu’il est important que l’ACRO puisse survivre en France, vos dons sont indispensables.

Mayak ?

Plusieurs sites Internet ciblent le complexe nucléaire de Mayak, situé dans l’oblast de Tcheliabinsk, comme origine de cette contamination, sans que nous soyons en mesure de valider ces affirmations. À l’origine, ce complexe militaro-industriel secret est conçu afin de fabriquer et raffiner le plutonium pour les têtes nucléaires et est devenu tristement célèbre pour ses accidents nucléaires graves, dont celui de Kychtym (Wikipedia). Le site est toujours actif et sert de centre de traitement des combustibles usés (site Internet de l’exploitant).


La Russie reconnaît une contamination au ruthénium, mais dément être à l’origine de la fuite

Mise à jour du 20 novembre 2017

A la demande de Greenpeace Russie, c’est l’agence météorologique russe qui a fini par admettre que l’origine de la fuite est bien en Russie (communiqué en russe). Elle titre son communiqué : pollution extrêmement élevée et élevée. L’entreprise d’Etat Rosatom, quant à elle, nie toujours en être à l’origine (communiqué en anglais).

Dans son communiqué, l’agence météo ne donne pas la contamination en ruthénium-106, ni en rhodium-106, mais plutôt la contamination bêta total des aérosols. Mais on peut supposer que l’excès est essentiellement dû à ce couple de radio-éléments. La concentration la plus forte a été détectée à Argayash (Аргаяш), dans l’Oblast de Tcheliabinsk, qui inclut Mayak et Kychtym entre le 26 septembre et le 1er octobre derniers : 7 610×10-5 Bq/m3, soit 986 fois plus que ce qui est généralement mesuré dans cette station. A Novogorny, toujours dans l’Oblast de Tcheliabinsk, c’était, ces mêmes jours, 5 230×10-5 Bq/m3, soit 440 fois plus que les valeurs habituelles. Des valeurs excessives en aérosols radioactifs ont aussi été détectée dans le Caucase du Nord, jusqu’à 2 147×10-5 Bq/m3, soit 230 fois le bruit de fond, et au Tatarstan. D’autres données sont disponibles dans ce document en russe.

Il est donc maintenant confirmé qu’un rejet grave a eu lieu sur une installation nucléaire russe qui est encore secret. Mais l’agence météorologique n’a, semble-t-il, pas lancé d’alerte et ce sont les populations locales, qui vivent dans un environnement déjà fortement pollué, qui ont été exposées. A quoi servent ses balises ?

L’agence météorologique explique que les niveaux relevés sont très inférieurs aux limites locales fixées à 4,4 Bq/m3. Un non-évènement en Russie, donc…

Ces concentrations sont très élevées au regard de ce qui est mesuré habituellement et c’est la signature non ambigüe d’un rejet anormal. En revanche, les concentrations atmosphériques annoncées ne nécessitent pas la mise à l’abri ou l’évacuation, même au regard des normes françaises. La station de mesure de Argayash (Аргаяш), où la concentration la plus forte a été mesurée, est à une trentaine de kilomètres du complexe nucléaire de Mayak. A proximité du point de rejet, la pollution peut être plus élevée. Des mesures environnementales indépendantes sont indispensables.

L’agence météorologique russe mentionne aussi des retombées allant de 10 à 50 Bq/m2 et par jour, par endroits.

Toujours rien sur le site de l’AIEA

A noter que l’agence météo mentionne aussi une pollution à l’iode radioactif dans la région d’Obnisk (Обнинск), située à environ 100 km au Sud-Est de Moscou. Les concentrations ont atteint 1,85×10-3 Bq/m3 les 18 et 19 septembre et seraient due à un centre de recherche local.

Le 21 novembre, l’IRSN précise dans l’Obs que les résultats de sa modélisation donnaient des valeurs beaucoup plus élevées dans les environs immédiats du point de rejet. Mais, si les balises dont les résultats ont été publiés ne sont pas sous les vents au moment du rejet, cela reste compatible. Et l’Institut d’ajouter : « On peut dès lors se poser la question du rôle de l’AIEA. Ce n’est pas normal d’arriver à cette situation. Ce n’est pas normal d’observer du ruthénium dans l’air de toute l’Europe, sans jamais en connaître la source. »


La Russie tente de rassurer

Mise à jour du 24 novembre 2017

L’agence de régulation des produits agricoles Rosselkhoznadzor a diffusé un communiqué (en russe uniquement) démentant la contamination des produits agricoles russes. Elle parle de panique sur le marché des céréales qui ne serait due qu’à des rumeurs et aux spéculations médiatiques, mais ne donne aucun résultat de mesure.

L’Institut de sécurité nucléaire de l’Académie des sciences russe (IBRAE RAS), quant à lui, a annoncé la création d’une commission d’enquête dans un communiqué (en russe uniquement) dont le but est de déterminer l’origine de la pollution au ruthénium et rhodium. Il se veut aussi rassurant en affirmant que les niveaux relevés en Russie sont largement dans les normes et a déjà conclu que Rosatom, la compagnie nationale russe, n’est pas en cause. Et c’est Rosatom qui informera le public des résultats de l’enquête.

Faute de laboratoire indépendant sur place, il y a encore des progrès à faire en termes de transparence et de radioprotection du public en Russie.


Les données de l’AIEA ont fuité

27 novembre 2017

L’ACRO met en ligne les données récoltées par l’AIEA concernant la pollution au ruthénium détectée en Europe que l’agence de l’ONU refuse de rendre publiques. Ce tableau, daté du 13 octobre 2017, ne contient aucune donnée russe…

Quant à Rosatom, l’entreprise d’Etat russe, elle invite, sur sa page Facebook, les journalistes et les blogueurs à venir faire un tour à Mayak, qui, d’après les journalistes occidentaux, est devenue le berceau du ruthénium… Au programme, « alphabétisation » sur le ruthénium. La compagnie ferait mieux de publier ses données environnementales, si elle en a.


Résultat de l’enquête « indépendante » pilotée par Rosatom

8 décembre 2017

La compagnie nucléaire d’Etat, Rosatom, a tenu une conférence de presse pour communiquer les conclusions de l’enquête « indépendante » sur la contamination au ruthénium-rhodium relevée fin septembre dans toute l’Europe : elle n’est pas responsable de cette pollution ! Rien sur son site Internet pour le moment… A suivre !

Seule une enquête indépendante internationale permettra de faire la lumière sur ce rejet. La Russie pourrait commencer par publier toutes ses données environnementales dans la zone suspectée.


Rosatom reconnaît rejeter du ruthénium-106 dans l’environnement, en routine

14 décembre 2017

Selon l’Agence de presse AP, Yuri Mokrov, conseiller du directeur général du centre nucléaire de Mayak, a reconnu que le traitement des combustibles usés conduit à des rejets de ruthénium-106 dans l’environnement. Et d’ajouter que l’usine de Mayak n’est pas à l’origine du rejet anormalement élevé qui a été détecté dans toute l’Europe en septembre dernier. Les rejets seraient minimes et des centaines de fois inférieurs aux limites autorisées. Les niveaux autorisés ne sont pas donnés dans l’article.

On résume :

  1. La Russie n’a d’abord pas détecté le ruthénium radioactif détecté dans toute l’Europe ;
  2. Puis, suite aux calculs faits en Allemagne et en France qui pointaient vers l’Oural, elle a fini par reconnaître l’avoir détecté à des niveau extrêmement élevés, mais sans danger. De fait, les niveaux annoncés sont très supérieurs à ce qui est mesuré en routine, mais ne nécessitent pas de mesure de protection particulière. La mesure d’une pollution atmosphérique se fait en filtrant l’air pendant plusieurs jours. Il s’agit peut-être d’une moyenne sur longue période qui atténue le pic de pollution. La période de mesure n’est pas donnée.
  3. Rosatom, l’industrie nucléaire d’Etat en Russie nie toute implication dans le rejet. Elle met en place une commission « indépendante » qui conclut dans le même sens et qui ressort la thèse de la chute d’un satellite. Et là, tout d’un coup, Rosatom reconnaît rejeter régulièrement du ruthénium-106 dans l’environnement et que ses rejets sont dans les limites admissibles. Et donc pas d’incident particulier à signaler… La limite doit être très élevée !

La Russie n’a pas beaucoup changé depuis Tchernobyl. Sans laboratoire indépendant sur place, la glasnost n’a pas touché le secteur nucléaire.


Du ruthénium-103 était aussi présent dans les rejets

5 février 2018

Une réunion avec des experts internationaux a eu lieu en Russie fin janvier 2018 à propos de cette affaire de ruthénium, dont l’IRSN. Voir le compte-rendu en anglais. Il en ressort que dans certains pays du ruthénium-103 était aussi présent dans le nuage radioactif. Étonnamment, aucune communication officielle n’en parlait jusqu’à présent, alors que cela donne des indications sur la source potentielle de cette contamination. Le 22 janvier dernier, le Bundesamt für Strahlenschutz en Allemagne disait encore qu’il n’y avait que du ruthénium-106.

La demi-vie du ruthénium-103 est de 39,26 jours, ce qui signifie qu’il disparaît beaucoup plus vite que le ruthénium-106 qui a une demi-vie de 373,6 jours. Et donc le combustible nucléaire à l’origine du rejet ne doit pas être sorti depuis longtemps du réacteur : 3 à 4 ans maximum. Or, en général, le traitement des combustibles usés se fait sur des combustibles plus anciens.

La presse russe en déduit que cela disculpe le site de Mayak. En effet, cela permet d’exclure a priori la vitrification fortement soupçonnée jusqu’à présent, sauf, si pour une raison obscure, du combustible jeune a pu être traité et les résidus vitrifiés. En revanche, la fabrication de sources radioactives se fait généralement sur du combustible usé « jeune ». Et Mayak fabrique des sources…

Le Figaro évoque la commande par le CEA et l’INFN en Italie au complexe nucléaire de Mayak d’une source de cérium-144 destinée à une expérience de physique. Or, la production de cette source nécessite le traitement de combustibles « jeunes », âgés de moins de 5 ans. Le quotidien parle de coïncidence troublante…

Décidément, ce rejet est suffisamment mystérieux pour que tout soit mis sur la table et l’on espère une communication officielle des experts internationaux présents en Russie.

Le 6 février, l’IRSN a mis en ligne une note d’information en français et en anglais et un rapport en anglais uniquement qui résument ses investigations qui confirment la détection de ruthénium-103 et étudient l’hypothèse de la fabrication d’une source de cérium-144. Le rapport est riche d’informations.

Réacteur n°2 : débits de dose élevés

TEPCo a récemment envoyé un nouveau robot dans l’enceinte de confinement du réacteur n°2. La compagnie avait immédiatement mis des images en ligne, mais sans aucune donnée technique, comme la température ou le débit de dose.

TEPCo vient de mettre en ligne des images commentées et quelques résultats de mesure. La température est de 21°C et le débit de dose à l’intérieur de l’enceinte de confinement varie de 7 à 8 Sv/h, ce qui est une dose létale en peu de temps. Cette valeur de 8 Sv/h a aussi été détectée à proximité de ce que TEPCo considère comme du corium, à savoir un mélange de débris et de combustible fondu.

Ces débits de dose sont très élevés, mais aussi très inférieurs à ce que TEPCo avait relevé il y a un an, lorsqu’un autre robot avait été envoyé dans l’enceinte de confinement. La compagnie avait alors annoncé des débits de dose pouvant atteindre 530 Sv/h, puis 650 Sv/h, et quelques mois plus tard, avait revu ce chiffre à la baisse : il était alors question de 80 Sv/h, soit 10 fois plus que cette fois-ci. Les points de mesure ne sont pas les mêmes.

TEPCo dit aussi avoir mesuré 42 Sv/h au pied de l’enceinte, à l’extérieur, ce qui est très surprenant. Pourquoi y aurait-il plus de radiations à l’extérieur qu’à l’intérieur, près du corium très irradiant ? Ces nouvelles données sont donc très mystérieuses et mériteraient plus d’explication et des mesures complémentaires.